ICRF Heating and Flow Generation in DT Plasmas

J. R. Wilson Princeton Plasma Physics Laboratory

November 21, 1997
Annual Meeting of the DPP of the APS
Pittsburgh, Pennsylvania

1996-97 RF Research Focused on Possible Profile Control Techniques

- u Attempt to control transport barriers directly
 - Use direct ion Bernstein wave (IBW) heating (ala PBX-M)
- u Current profile control
 - Explore mode conversion CD in DT plasmas:
 - Eliminate competition from ⁷Li ions (present in TFTR from machine conditioning techniques) which was believed to plague earlier experiments

Principal Results of these Experiments are:

- u Successful IBW wave coupling was found to be sensitive to poloidal phasing.
- u Elimination of ⁷Li ions resulted in efficient mode conversion heating in DT plasmas.
- u Localized poloidal flows were observed with both direct IBW and mode conversion heating.

Direct IBW Heating Experiments

- u Past experiments on other devices have found heating and wave coupling to be difficult
- u Two Coupling Regimes Explored
 - Electron plasma wave (EPW)
 - Cold electrostatic ion cyclotron wave (CESICW)
- u Two Antenna Phasings Explored
 - Four straps phased (0,0,0,0) or (0,0,0,0)

Two IBW Launch Scenarios Attempted

Cold Electrostatic Ion Cyclotron Wave Launch

- EPW launch consistent with localized ion heating on LFS (desired for CH mode), but very sensitive to edge density profile.
- u CESICW launch is less sensitive to the edge density profile and has greater power flux at the edge.

Coupling Improved with 0/0/ / Phasing

• 0/0/ / phasing

• 0/0/0/0 phasing

Loading Affected by Poloidal Phasing

Better Core Heating with Lower Loading - indicates edge modes

Similiar Coupling with EPW and CESICW

EPW launch

- > 0/0/ /
- > 50.65 MHz
- $> B_0 = 2.4 T$

CESICW launch

- > 0/0/ /
- > 50.65 MHz
- $> B_0 = 4.7 T$

Measured Edge Density Profile Consistent with Theory for Good Coupling

- u Edge density modification consistent with Ponderomotive force.
- u Independent of phasing

ORNL Reflectometer

R (cm)

RF probes indicate comparable wave amplitude near and far from antenna

Decay instabilities are observed sporadically

With EPW launch, core reflectometer only observed wave on high field side

 Wave signal on high field side cannot be IBW, suggests surface wave.

IBW Summary

u Antenna phasing is observed to have the strongest effect on IBW Heating and loading

u Parasitic surface wave excitation is a strong candidate to explain the low efficiencies observed

Mode Conversion Heating and Current Drive

- u D-He³ experiments demonstrated that Mode Conversion of the fast wave to a IBW can result in efficient localized heating and current drive on and off axis.
- u Initial D-T mode conversion experiments did not behave as expected.
- ⁷Li ions present from machine conditioning were believed to be responsible for this behavior.

Mode converted IBW will damp on ions for $T_i > 30 \text{ keV}$

u Modeling with FELICE (M. Brambilla) for T_i = 30 keV + 25% beam ions, T_e = 8 keV, B_0 = 5.1 T, n_e (0) = 4.5 x 10^{19} m⁻³

DT Mode Conversion was dominated by ⁷Li Damping

D-T MC with hot ions affects the core strongly enough to modify neutron rate

Consistent with a ~5 keV modulation in the ion temperature

Lower Target Ion Temperature leads to Electron Heating

Electron temperature (keV)

D-T mode conversion experiments show evidence for strong, localized ion heating

Switchover to ion heating is predicted for sufficiently hot target plasmas

Poloidal Flows can be Driven by RF Waves

Momentum Balance Equation

$$_{m}\left[\left\langle \tilde{\boldsymbol{v}} \qquad \tilde{\boldsymbol{v}} \right\rangle + \mu_{neo} \left\langle \mathbf{V} \right\rangle \right] = \left\langle \tilde{\boldsymbol{q}} \tilde{E} \right\rangle + \frac{1}{c} \left\langle \left(\tilde{\boldsymbol{J}} \boldsymbol{x} \tilde{\boldsymbol{B}} \right) \right\rangle$$

Reynolds **Stress**

neoclassical damping

induced flow

Charge-separation Electromagnetic correction

Dominant for IBW

Normally ignored (small)

$$\frac{dV}{dr} = -\frac{d}{dr} \frac{(\tilde{\mathbf{v}})\tilde{\mathbf{v}}}{\mathsf{\mu}_{neo}}$$

Poloidal Flows are Observed for both Direct IBW and MC Heating

u Magnitude of observed flows are smaller than those believed to be necessary to suppress fluctuations:

$$dV_{pol}/dr \sim C_s/R$$

u Direction of flows is in agreement with simple theory

Sheared Poloidal Flow Develops During IBW Heating

Absence of Sheared Flow in the Absence of IBW

Sheared poloidal flow observed near IBW Absorption Layer

V for no IBW Discharge

Summary

- u Elimination of surface waves by poloidal phasing improves IBW heating efficiency
- u Elimination of ⁷Li ions resulted in successful DT Mode Conversion Heating
- u Poloidal flows were driven with both directIBW and Mode Conversion heating

Ion Resonances for 76 MHz

Radial Electric field derived from Force Balance

Change in Poloidal Velocity Observed during DT Mode Conversion Heating

Mode Conversion layer on low field side of plasma R ~ 2.95 m

